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Abstract We present a theory of estimation of paramcters in linear
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We use a white noise model to represent observation errors (in ccntrast to

a Wiener process model). The application is to the problem of identifying

aircraft as well as turbulence (wind-gust) paraneters from {light test

data. Results obtained on actual data (not simulated data) are presented.
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1. Introduction

The estimation problem in essence is the following. We have an

observed process y(t) (n x 1 matrix function) which has the form
y(t) = 8(6, t) + N(t) B %k <% (1.3)

where '0' denotes a vector of unknown parameters which we want to estimate,
S(9, t) being a stochastic process ("signal") which is completely specified
once 0 is specified (by means of a stochastic differential system, for
example) and N(t) is a stochastic process which models the errors (that
remain even after all 'systematic' errors, such as bias and calibration
errors, have been accounted for). There is much evidence to sugpest that
the noise process may be well modelled as Gaussian, and independent of
the signal process. This is a basic assumption thruout in this paper.
Under the title of "System Identification" there is a larpe
engineering literature dealing with such problems. This is well documented
in the proceedings of three symposia [1] devoted exclusively thereto.
In the bulk of this literature, the process S(8, t) is taken to be
deterministic, in which case the estimation is largely treated as a

'Least Squares' problem of minimising
o 2
f | ly(t) - sCa, ©)||at
0

over a predetermined admissible set of parameters 0. Where the stochastic
signal case is considered, it is reduced to the time~discrete version

of (1.1):

y, = §(0) + N (1.2)
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for the reason that the continuous time is mathematically too difficult
to handle, and anyhow, in digital computer processing (as is the rule),
it is so discretized in the A-D conversion process anyway. This is
indeed true; but the authors invariably procced to make the assumption
that the noise samples {Nn} are mutually independent. But this requires
that the sampling rate (in the periodic sampling of the data) be not more
than twice the postulated 'bendwidth' of the noise, itself actually unknown.
Indeed in most practical cases the sampling rate is far higher than twice
the bandwidth. To meet this objection, one may then allow the {Nn} to be
correlated. But then the correlation function must be known, and anyone
with experience in handling real data can easily appreciate that it is
unrealistic to require that much knowledge of the noise process, even if
the complication in the theory can be borne.
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, that it is much better to work with the
time-continuous model (1.1), allowing as high a sampling rate in the
processing as the A~D converter is designed for. But in the timo-
continuous model we are faced with another problem. The basic tcol in
estimation is the likelihood functional (for fixed parameters) which is
based on the Radon-Nikodym derivative of the probability measure induced
by the process by y(*) to that induced by the noise process N(t). But
this derivative is too difficult to calculate even when the precise
spectrum of N(¢) is known, which it is not. What we can assert for

sure is that the bandwidth of noise N(t) is much larger than that

of the process S(0; t), which is essential. in order that the measuring
instrument does not 'distort' the signal. At this i)oint it was custaomary
in the earlier enginecring literature to introduce "white noise" in a

formal way as a staticnary stochastic process with constant spectral




density to represent the 'large bandwidth' nature of N(1). With the
advances in the theory of diffusion processes using the Ito integral,
it became fashionable to use a Wiener process model as being "more

rigorous" [2]. Thus we replace (1.1) by

i
Y(t) f S(0,0)do + W(E) 1.3)
0

where W(t) is a Wiener process. We can then exploit the well-developed
machinery of martingales and Tto intergrals. In fact the likelihood

function can then be expressed as: (see [2]):
RN 2 T A .
Exp - 1/2] f |15co,0)] | %at - 2 f [SC05t), dY(t)-l} (1.4)
0
0

where g(O,t) is the best mean square estimate of S(0,t) given the signa-
algebra generated by Y(s), s < t. This formula can be justly considered
as one of the triumphs of the Ito theory, the key to the success being
the appearance of the Ito-integral in the second formn of (1.4). Tuis
integral is defined on the basis that Y(t) is of unbounded variation
with probability one. Of course no physical instrument can produce such
a waveform. To calculate it, given the actual observation (1.1), we can

"retrace" our steps back from (1.3) and use
y(t)dt

in place of dY(t). But this is totally incorrect, unless S(0,t) is
deterministic, and any minimisation procedure based on it leads to
erroncous results. This point is not appreciated by authors using (1.3)
as "more rigorous", perhaps because they have not had occasion to actually

calculate anything based on real data. In any data generated by
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digital computer simulation, which must periorce employ the discrote
version (1.2), this point can be completely masked and hence never
appreciated.

Faced with this difficulty we have tu examine more precisely the
model again, to see a physically nore meaningful way of exploiting the
fact that the noise bandwidth is large compared to the signal bandwidth.
What is needad is the ‘asymptotic form' of the likelihood functional as
the bandwidth expands to infinity in an arbitrary mamner.

Such a theory has been developed by the author using a precise notion
of white noise. This is explained in Section 2. Based on this theory
we derive a likelihood functional in Section 3. It twns oUt that

formula (1.4) is replaced by

T K 9 T A
Exp - 1/2 {f f|s¢e, 0] | at ~ 2 f S(0,t) y(t)dt
n 0

PN

Jlied "
+f (IIS(O,th - ”S(G,t)ll?)dt} (1.5)
0

where A denotes conditional expectation given the data upto time t.

Note that a third term appears which can also be expressed as:

T A
fo [|sCo,t) - S(G,t)]l2d't

ard in the case where S(0,t) is Gaussian, this reduces to

T A .
f EL|[SC0,t) - S(0,t)]]%1dt
0

being thus the integral of the mean square errvor in estimation of the
signal S(0,t) from the observation upto time t. When the signal process

can be described in terms of stochastic differential equations, whether
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finite or infinite dimensional advantage can be taken of the fact that
the mean square error can be evaluated by solving a Riccati equation.
Section 4 is devoted to this specialization. Section 5 deals with the
application to the problem of stability ad control derivatives from

flight test data taking turbulence into account. The algorithms used

and results obtained on actual flight date are included.
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2. WHITE NOISE: BASIC NOTIONS

let H denote a real separable Hilbert Space and let
W= L, £0, T: Bl B¢ T4 4,

denote the real Hilbert Space of H~valued weakly measurable functions
u(+) such that
T -

f [uCt), ult)jdt < =

0
with inner-product defined by

|1\
fu, v1= f  [utw, vl
0

let u, Conote Ganes measure on W (en the cylinder sets with finite dimensional

Borel basis) with characteristic function
CG(h) = Exp - 1/2[h, hl, h e W,

Elements of W under this (finitely additive) measure will be 'white noise
sample functions', denoted w. This terminology appears to have the sanction
of usage; see Skorokhod [ 3] for example. It is essential for us that W is
an L,-space over finite interval.

Any function f£(*) defined on W into another Hilbert Space H such that
the inverse imgges of Borel sets in “r' are cylinder sets will be called a
‘tame' function. See Gross [ 4], As is readily seen, the class of tame

functions is a linear class. Since the inverse image of the whole space ”1*




must be eylindrical, it is clear that any tame function has the form f(Pw)

where P is a finite dimensional projection.
To introduce the notion of a 'randam variable' let us first confine
& We

ourselvas to the case where Hr is finite dimensional: Hr' = R say.

introduce a metric into the linear space of tanez functions by:

£ ),! af w‘_lf:fj_l_-— dit,
oo

and then conplete the space, the carpletion yielding a Frediet Space. Every
elenont of the completed cpace is called a 'randanm variable' and if g denotes
such an element and .fn(w) a corresponding Cauchy sequence in probability,
then we define the corresponding 'distribution finction' or probability

‘ - L . - 3 - Y ooy WA -
measure on R to be that induced by the characteristic function

C .::.' - :,_;"1_:_.}4 ?':_‘lrf:‘l(ﬁl‘) - h]} (")'0\

) imt | 2.0)
" n

; 5 L r pors n n

The latter limit exists (uniformly on bounded sets of K = Hr)'

In the case where Hr is no longer finite dimensional, we shall still
identify Cauchy sequences in probebility of teme { unctions as "wc.ak random
variables". The limit in (2.0) still holds, uniformly on bounded sets in
Hr’ but the limit may in general only dofine a "weak dis ribution” on I IP. Ve
recall in this mxﬁec’cium the Sazonov theorem [ 5] that the limit is the
characteristic function of a probability measure if and only if it is
continuous in the trace-norm topology ('S-topology' see below). This is
automatically the case if the sequence is Cauchy in the mean square sensej

and we shall then drop the qualification "weak". ‘

o




let f(w) be any Borel measurable function mapping W into Hr' Then
f(Pw) is tame for every finite-dimensicnal projection operator P. Let {I'n]
denote a cequence of finite dimensional projections converging strongly to
the Identity; the sequence miy be assuned to be monotcne. 1f the sequence
f(an) is Cauchy in probability, then we may associate a (weak, ingeneral)
randon variable with £(+). lat us denote it by f (a notation used by Gross).
This limit of cource can depend on the particular projection sequence chosern.

Of primary interest to us are those functions f£(¢) for which {i(l’nc:)} is

Cauchy in probability for ewery such sequence of finite dimensional projections

and moreover such that all such Cauchy sequences are equivalent so that the
limit random variable f is wiique. In that case we say that f(w) is a (weak)
random variable. We shall use the term "wandan variable" if the corresponding

measure is countebly additive; we shall be dealing in the sequel only with

21 R P e
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The simplest function one can consider is perhaps the linear function:
flw) = 1w

where L is a linear bounded transforseation mapping W into Hr-’ where we now
allow Hr to be infinite dimensional. Then it is easy to see that if L is
Hilbert-Schmidt, then {Lme] is Cauchy in the mean square sense, and Ia

is a random variable. Convsersely L must be H.S. if lw is to be a randam

variable.
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What is the class of functions which are random variables? To answer
this question, at 1l ast in pert, let us introduce the S-topology on W: this

is the (locally convex) topslogy induced by seminoriass of the form:

plw) = \’(Sw,wj- (219

where here (and hereinafter) S will denote a self-adjoint, non-negative

]

definite trace-cless operator an W into W. For the case where Hr' = R,

Gross [ % ] has given a sufficient condition: f(+) is a random variable if
it is wniformly continuous in the S~topology. Uniform continuity means that

given € > 0, we can fini p(.) such that
[1£G0) = £(y)|| < € for all x, y such that p(x~y) < 1.

Unfortunately Gross does 1ot seem to discuss non-trivial examples of funcotions
satisfying this -oonditiom Here we shall give a sufficient caondition for a
class of randoan variables with finite second moment.
Theorem 2.1

Let pn(w) denote a hamogeneous polynamial of degree n mapping W into Hr-'
Suppose it is continuous at the origin in the S-topology. Let P denote any
finite dimensional projection.

Sup E(||Pn(Pw)|[2) <o {2.2)
P

where the supremum is taken over the class of all finite dimensional projections.

Conversely, if (2.2) holds, then prs-) is continuous at the origin in the

S-topology.

Proof We begin with a simple but useful Lemna.

10




lemma 2.1
Suppose pn(-) is continuous in the S-topology at the origin. Then there

exists a seminorm in the S~topology:

p(w) = VISw,w] (2.3)

such that

[ (|| <M p(w)" (2.4)

Converscly if (2.4) holds, then pn(w) is continuous in

where M is a constant.

the S-topology at the crigin.

Proof

Continuity in the S-tcpolegy al zexo jmplies this: given e > 0 we can find a

seminorm of the form (2.3) such that

Hpn(w)ll < ¢ for all w such that p(w) <6 (2.5)
Hence for any w for which

p(w) § 0,
we have that

o, Gy | < €

n plw

or by the homgeneity of pn('),

“pn(u))” < (-6-%) o)™, plw) § 0

b

|
b
b
i
|
,‘
|




If plw) = 0, then for any positive number k,

pGw) = 0
!
j" and hence from (2.5)
; | p, () | }< elke
|
| for all k > 0 and hence
pn(w) =90
1 Hence 2.% holds. The converse is obvious.
j Proof of Theorum
3 Corresponding to a finite Adimansional projections P, wc can find an
orthonornal basis {<£»i; cuch that P is the projection operator corpesponding to
. the space spanned by (-i, iz 1,2.0.m let
p&wﬁ kn(w,...w)
kn(' ..) being the symmetric n-linear formj corresponding to pn(-).
Then i
m m
p (I)(l)) = E e e Z a' ’tof° Ci o'cocn (2.6)
., M e e
n
:
where {
’ B seovy =K (s geesihs )
Lo 7 n 2
! 1 n n ll 1n

Y
'
™
<
e
~»
&
=

' 52 T




The {ci} is a sequence of independent zero-mean unit variance Gaussians and

(2.6) defines a tame function. Morcover we can readily calculate (by expressing

(2.6) in terms of Hermite polynamial for instance) that

EC| |, ()| |9

(n/2] : m m m m
2 ¥ ( “'\, 52 i A L I
= = ! ! 1 3 = 1. = ke
v= 0 (M-2v)12°v! Lop4131  ip=1.dg=1 i,=1
L W GIRCA Te i]l? (2.7)
S S ey 2V T *
But fram lemna 2.1, we have that
e eo]l? < [ wel (2.8)
where
S =PSP
m
and is of course trace-class and finite dimensional.
Hence
. T 2 ol o ’|n
EC| lpn(r’u))“ 1 < EUS wwl) (2.9)
let ¢5<’ k = 1,...v, be the orthonomalized eigen~vectors of Sm with corresponding i

non-zero eigen-values ).}\

Then

and we have

-
E([S, w,0]") = £(Tr.S_, Tr.S . . Tr. ST

13
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where f(+++) is a fixed continuous function. Of course
Tr. S3
m
is monotone in m for each j and converge to
Tr. SJ
Hence it follows that
Z
EC|| p (P[0 <

for all finite dimensicnal projections.
To prove the converse, suppose (2.2) holds. The (2.7) holds for every m, and

taking v= 0 therein, we obtain that

0 fe=] 2
- o The 24 s ) < o (2.10)
e .o .l: |'4\n\\y.‘ ,..Y. ZfH .
i g, i n
for every orthonormal sequence {¢i}. Hence p (+) is Hilbert-Schmidt. Of
course
o, 117 <1 [l |2 . (210

Define now S by:

[sw,0] = (|| w]]H"

Then S is Hilbert-Schmidt by (2.10).

For any finite dimensional projection P,

E[SPw,Pw) = E[PSPw,w]

= B | 0 [HYY

4




and hence

sup E[PSPw,w] <
P

But taking the orthonormal basis of eigen-vectors of S, it follows that S
is trace-class.

It follows from Theorem 2.1 that if a homogeneous polyncmial is
uniformly continuous in the S~topology, the corresponding random variable

has finite second moment.
i

For a homogeneous polynanial of degree 2 with range in I\‘l(HP = R or
R™ more generally) we can prbve that continuity at the origin in the S-topology
is sufficient to make it a random variable. For from (2.7) we have

m m 2 mn )
DD lilet] © 2 el <

EL| | p, (2w | |2

and hence

A
8

£k, (4550501
A
for any orthonormal system, Hence it follows that
2
E[{{p,(P ) - pz(me)H ]

is Cauchy. This suffices for our purposes here. See [6] for more, and in

particular the relation to multiple Ito integrals.




3. RADON-NIKODYM DERIVATIVES OF WEAK DISTRIBUTIONS.

Let w denote white noise samples as in Section 2 and let
y(w) = f(w) + w £3.1)

where f(+) is a random variable mapping into W; then {y(me)} is a

Cauchy sequence in probability (being the sum of two such sequences) and
the limit is independent of the particular sequence {Pm} chosen. Hence y(w)
induces a weak distribution on W. Call it uy. As finitely additive
measures , uy is said to be absolutely continuous with respect to

Glf

given any € > 0, we can find § > 0 such that for any cylinder set C,
uy(C) <e

as soon as
pG(C) < 8.

The definition of the derivative however is more involved. For our purposes,
we shall be concerned with the case where the derivative is a random-variable.
That is to say, there exists a function f(w) mapping W into R such that

f(w) is a random variable and for any cylinder set C:

p,(C) = lim f f(P_w)dit, : i
y % C m G

where (Pm} is any monotone sequence of finite dimensional projections
converging strongly to the identity.

Let

" = 1y [C0,T); HS]

Jo v




where HS is a separable Hilbert space. Let uSG denote Gauss measure thereon,

and let wg denote points in ws. (The subscript s stands for 'signal'). let
W2 = WS ®wW

the Cartesian product and induce the product Gauss measure y, on w2;

2

i
1,(C, ®C) = 13(C) U ()

where Cs is a cylinder set in WS and C a cylinder set in W. Define

Denote points in w2 by %

Let
ylw,) = f(ws) + W £3.2)

where f(+) is a random variable mapping ws into W. Let uy denote again the
(finitely additive) measure induced by y(+). We wish to prove the
absolute continuity of the measure uy(-) with respect to the
measure uG(') and to findthe corresponding derivative.
For the Wiener process version of (1.2), such a result appears to have
been first developed by Duncan [7] for the case where flw,) is a diffusion
process. See also [8] as may be expected, our result has a superficial similarity to
Stratanovich version [9, eq. 12].

Let H be finite dimensional: H = ok s




Theorem 2.1 let f(w_) denote a randam variable mapping W, into W such that

E( ] £]1?) <o (3.3)

Let y(wz) be derined by (3.2).
Then uy is absolutely continuous with respect to “G and the derivative
is a random variable (white noise integral), corresponding to the function

g(w) defined by:

glw) =f (Exp - 1/2{HxH? - 2 [x,0]}) dug (3.4)
W

where x is a dummy variable denoting points in W, and us(-) is the countably

additive measure induced by f£(-) on the Borel sets of W. More precisely:

lim E(Exp i [f(Pm ws) ,h1)
m

=€)

=f ei[m’h]du
W 8

where Pm is any monotone sequence of finite dimensional projections converging
strongly to the identity.
Proof

Vith Mg denoting the (countably additive) measure induced by f(ms) on W,

define for each w:

glw) =[q Exp - l/2{||x||2 - 2 [x,w]} dug
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This is well defined since the integrand is continuous in X, non-negative,

and bounded by
2
Exp 1/2 ||e]]°.

Moreover g(w) is actually a continuous functional on W. For, given € > 0,

we can find a closed bounded Ke such that

“S(Ke) > 1 - e,

j;( B - 172 {||s}|? - 2 [s,el} an

€

S

is continuous in w and on the complement Ke;’ the integral is

2
< (exp U—u—)%—l——)e

Now let us show that g(w) is a random variable. Let {Pm} denote a monotone
sequence of finite dimensional projections on W strongly convergent to the
identity. Let {q>i} denote a corresponding orthonormal basis, with the

range of Pm being the span of the first m members of the sequence. Let us

note that we can write
: 2 sk 12
g(P_w) :_/‘;(pr. -1/2 ||x - meH - 1/2{] |1-mx|| - 2 [P x,0]h). dug i

and hence is

.<_f Exp - l/2{||me||?' - 2 [P x,0]} dug.
W
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Let

e 2
g, (w) =f Exp - 1/2 {IImeH - 2[P x,wl} du_

W
= gm(f’mm)
Then
j\;\l g (wdiy, :ﬁq(‘/‘;}?xp - 1/2{||E>mxH2 - 2 [P x,0l} du) duig
=1
Next

E(|g(Bw) - g (w)])

2 o 4 = 2 i 2 R ) N
-j‘;f‘(dl Exp - 1/2]|x-P x||°) Exp - 1/2{]|P_x]| 2 B %01} duedu,

— 4 % 2
-'(;(1_5@- 1/2||x - P_x]|| )dus {3.5)

<€ for all m > m (e).

Hence the convergence properties of {g(me)} are the same as that of {gm(m)}.
The latter sequence is a martingale. At this point rather than repeat
traditional arguments, we shall exploit them and thereby also show the

connection to the Wiener process version. Thus let

(y(w), ¢l] =¥ =% * Ci

1




where
X = fx, ¢iJ; g, = [w, ¢>iJ

Here the Tis i = 1,..n, for any finite n are independent zero mean, unit
variance Gaussians. We can create a "probability space" with a countably
additive measure on it such that for any finite nuiber of co-ordinates we
have the same distributions: namely R for the space, and the sigma-algebra
B generated by cylinder sets, for the Borel sets. Equivalently, we could
use C[0,T] the Banach space of continuous functions with range in Rn, (with

the usual sup norm) as the space by defining the mapping W into C[0,T] by:
T
s = [ 0<t< T
0

and W(t) to be standard Wiener nrocess on C[0,T] and defining
£
1(t) f x(a)do + W(t) (3.6)
0
with the Wiener measure and the measure induced by S(:) independent. In this

way we get a "co-ordinate free" representation, and we note that the variables

1
/;] (o Ct), ()] =y

have the same finite dimensional distributions as before. Moreover the
variables g,m(w) have a corresponding interpretation and have the same
distribution for any finite m, and under the condition (3.3), we know that
the measure induced by Y(-) is absolutely continuous with respect to Wienenr
measure, the martingale sequence converging to it in the mean of order one.

The derivative itself is given by (see Duncan [7]) by:
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T 2 T
Ex[Exp - 1/2 j; x(t)"dt - 2'/; x(t)dW(t) (3.7)

where Ex[ ] denotes expectation with respect to the measure induced by the

process S(+) on C[0,T]; the (Ito) integral (the processes being independent).

T
f *(£)dH(L)
0

being the same as:

T
fo [d)i(t) 5 ds(t)]

I X. C. where Xx.
1 < Wi | it

Y
1]

T
f [(bi(t) ,A(t) 1.
0

We have thus proved that g(me) is Cauchy in the mean of order one;
and such sequences are equivalent as we change basis. Moreover, it readily

follows that for cylinder sets C:

1]

uy(C) limit ./; gm(w) dyg

m

umit [ g® g
m C

This concludes the proof of the Theorem.




Corollary
Forany £, 0 <t < 7T, let

Wt) = L, ([0,t]; R

W_(t) = L, [[0,t]; H]

let ué denote the Gauss measure on W(t) and pg similarly the projection of
Mg on the sub-sigma algebra of Borel sets in W(t). Then the statement of

the theorem applied to measures on W(t) rcads:
g(t; P(tw) =£E>.~p =172 ([ [P0x] |7 - 2 [PCtIx,0]} dug

where P(t) denotes the projection of W on W(t).
Proof The proof is immediate. We state it rather to note that we cannot take
derivatives (with respect to t) in this formula as we can in the Wiener
process version.
Remark The Theorem holds for any countably additive measure p g on the Borel
sets of W, not necessarily generated by a random variable f(ms).

let us note that the main virtue of the theorem is not so much the
formula (3.4)but rather that the derivative is a random variable. The latter
has been proved for a related but more general problem in [10] under
additional assumptions. We explore this in the next section.

The 'Linear' Case.

Mostly to illustrate the ideas involved, let us consider the special

case where f (ws) is linear. Thus let

y(wz) = L Wy + W (3.8)

where now we allow H in the definition of W to be infinite dimensional, and
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where L is a linear bounded transformation on ws into W. Then we note that
in order for Lms to be a random variable it is necessary and sufficient that
L be Hilbert-Schmidt . Hence let L be Hilbert-Scluridt. Then y(w2) being
Gaussian, it is completely characterized by the corresponding covariance
operator:

e i

*
Since LL is certainly Hilbert-Schmidt {actually of course trace-class), we

can apply the Krein factorization theorem to obtain the representation

T+ UHt = @-2) T -2
where % is a Hilbert-Schmidt Volterra operator:

T
f = g3 glt) =f k(t,s)f(s)ds a.e. 0 <t <T
0

mapping W into itself. In particular we note that

z(wz) = y(mz) ~#y(<) 7
also defines white noise; and defining

I+ = -t

where M must then be also Hilbert-Schimdt and Volterra, we note that we can

represent y(w2) also as:

y(wz) = Mz(wz) o z(wz)
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In this form we can seek the derivative of the weak distributions induced

by y(.) to Gauss measure (induced by z(w2) but the processes are no longer
independent. However it is shown in [10] that the derivative is a random-

variable if and only if
%
M+ M

is trace-class. But, in the present instance this readily follows from the
fact that LL is trace-class, since

%

LIS = M + M)

In other words in the model (3.9), the conditions that M be trace-class is
always satisfied if it is deduced from the model [3.1]. Incidentally, it is

of interest to note that the derivative is given by:
§ : 2 ; &
glw) = Exp - 1/2 [|[Me]]” ~ 2 [Mo,w] + Te(M + M )] (3.10)
and can be deduced from (3.4). Also it should be noted that
£ %
(M + M) = Tr (¥+ &)
and also
= B[] |x -2y| l2]; x = Lo (3.11)

The last formula is particularly interesting since it has a variational
%
interpretation. Since Ims is such that the covariance LL is trace-class

we can formulate the problem of minimizing ‘

: 2.
L[Ilhus - Ky(wz)ll ] 9.12)




" p R e " » 2 ™ v B r .
S e r———rerrr ot i i e v aspg - “1‘

§ over the class of all Hilbert~Schmidt Volterra operators K. But to
? show that a minimum exists and is given by the H. S. Volterra operator Ko’
]
it is enough to show that
i d_ 3 G
§ ax E(| |Lms (X, +>d<)y(w2)l| ] =0
A=0
{
=& ¢ - Gk * KO, 602 = 8
dA 1 s o ol s Sy
A=0

3 or,
d e S % kS % i
T T (KO+AK)(I+LL)(KO+/\K)-2LL(KO+)\K)} =0
i
i witich yields
} I, L) \z
S| w o w
: TI‘.(KO(I*'LL)—LL)K =0

for which it is necessary and sufficient that

E3 £
KO(I + LL) - LL
be the ajoint of a H.S. Volterra operator. But substituting { for KO, we
see that |
ES E]

1 N y(I + LL) - LL
;f

s (@=I) (T +10L)+3

"
R, S

= (I 4+M)+1T

%
= M
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Hence & yields the optimal minimising H. S. Volterra operator. The main
point to be noted here is that existing of an optimal solution to the
minimisng problem (3.12) is equivalent to that of the Krein factorization.

Whether L is Volterra or not plays no role.

Conditional Expectation: Bayes Formula

Let us note now one important by-product of Theorem 2.1. Let ¢(*)

be any element of W. Then by
E[[f(0,), ¢] | yw,))] (3.13)

we shall mean the limit of the Cauchy sequence (in the mean of order two):

E[[F(w. ), ¢1 | P y(w)] (3.1%)
S e 2
vhere P is a sequence of monotone increasing finite dimensional

projections converging strongly to the Identity. It is implicit that
this limit is independent of the particular sequence P chosen. Ve can

then state: (Baye's Formula)
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Theorem 4.1

E[[f(ws), ¢] | y(mz)]

3 (J. (S,¢1 Exp - 1/2 (HSH2 - 2 (8, y(w,)1} dug

> (3.15)
L Bxp ~ 1/2 {|{s]|® - 2 (s, y(wz)]} dug

e Remark Note that (3.15) is defined for every y in W.

j Proof

| Given the monotone sequence of finite dimensional projections {l’n},
we may consider an orthonormal basis {¢n} for W such that Pn corresponds
to the space spanned by the first n. Then we can calculate

EL[£(w), ¢;1 | P y(w,)]

by the (finite-dimensional) Bayes rule:

; . 2
r ‘4[8, ¢;] Exp - 1/2 {HPnsll - 2 [PS, yl}. dug

_[ Exp ~ 1/2 {HPns]I2 - 2 [P S, y1} dug

and obtain in the limit, the formula (3.15) with ¢>l for ¢. The formula

for arbitrary ¢ is then immediate therefrom.

Corollary
let P(t) denote the Projections W onto W(t). Then for any ¢ in W,
and 0 < t < T,

E [P(1) flw)), P(t)¢] l P(t)y(w,) ]

/v; [P(1)S, P(t)¢] Exp = 172 {]|P(L)s| |2 - 2 [P(D)S, P(t)yl}. dug

f Exp - 1/2 {|[PC0s||? - 2 [P)S, P(OyD).  dug
W

(3.16)

Proof The proof is immdiate
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Likelihood Ratio: General Case

Let us now consider the general case where the signal process is not

necessarily Gaussian. Let
yCE) = SCt) + Nit) 0<t<T<w

where S(*) and N(+) are independent processes. We shall assume that the signal

S(+) has finite energy: (corresponding to 3.3)

x 2
f E(]]S(D)]])dt < »
0
For each t, 0 < t < Ty lek

W(t) = L2[Rn; (0,1

We shall shorten W(T) to simply W. Under condition ( 3.3), the process S(+) induces
a countably additive measure on W (and hence on W(t) for each t). [The cylinder
measure on W can be extended to be countably additive, in other words; this is a
consequence of the Sazonov theorem]. Thus y(.) defines a weak distribution on

W defined by the characteristic function:

pfetlyshly C.(h) Exp - 1/2 ||n]|? (3.17)
where

g0} & Bt

where we have used the inner-product notation:
T

[s,h] = f [S(t), h(t)dt, h € W.
O -

Then the cylinder measure “y induced by y(+) is absolutely continuous with respect

to Gauss measure o and the Radon-Nikodym derivative is defined by the function:
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f(w) = j‘; Bxp - 1/2 {|[s]|? - 2 [S,0)} du (3.18)

Thus for any cylinder set C,

Uy(C) = IJ{U-r:lato [ f(in) dug
where Pn is any sequence of finite dimensional projections strongly convergent
to the identity.

Let {¢n} be an orthonorimal basis in W and let L denote the mapping of W

into £2 2

T
Ix = a3 a_ = fo [x(0), ¢, (0)1do.

15 =t

Let M denote the measure induced on £2 by this mapping. Then we can rewrite

(3.18) in the form

flw) =f Exp - 1/2 {[z,z] ~ 2 [z, Lw]} du {8.19)
; & -

It must be emphasised that (2.6) is defined for every element w in W. Note also

that (3.19) can be defined with respect to any orthornormal system N)n}.

Let us next consider the likelihood functional f(y) where y(+) is the
observation. For this purpose, let (3.19) be defined with respect to the
orthornormal system {¢n}. For each t, 0 < t < T, define the operators A(t),
mapping into £2 by:

&
A(t)x = a; o> f [¢n(o), x(0) Jdo

0
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R(t) = A(t) At

Then the Radon-Nikodym derivative of the measwi e induced by the process y(+)

over [0,t] with respect to Gauss measure on W(t) is given by:

. e ) f Bxp - 1/2 {[R(D) £,5] - 2 [g, a(t)al} du, (3.20)
L

i

Note that A(T) = L. Let Pn denote the projection operator corresponding to the

first n basis functions {¢i}, i=1,...n. Then we define

A
z(t) = lim Elg|a(t) Pyl
n

As we have seen, we have (Bayes Formula) that

[£ ¢ Exp - 1/2 {[R(0)g,2] - 2 [z, altdyl} du,
A « -
z(t) = T

f Exp - 12 {[R()Z,2] = 2 [z, altdy]} du,
Js

Note that, by Schwartz Inequality

Ir 1z]1? Bxp - 172 {IRCDIT,E] - 2 [g, ADYD)} au
A . ;
lewll? <

S Bo-12 (R -2 [, AWyl dy
2 4

j‘ ||c||2 Exp - 1/2 ||R(D)g = A(t)y”2 du,
)
2

f Exp - 1/2 ||R(B)g - A(D)y| |2 Jduy
4

<ec EL| o] %0 Bxp + 172 ([[aCOy]] + K2 0<ecw, 0 <k <o (3.21)
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It should be noted that such an estimate is not available in the Wiener process
version. Moreover we shall show that (3.20) is actually obsolutely continuous in
t with an Lz-derivative. Let ¢(t) be infinitely differentiable with compact

support in (0,T). Then

T
f [£(t,w) ¢'(t)Idt
0

: T
= L f (Exp - 1/2 {[R(t)Z,z] - 2 [, A(tdwl} ¢'(t)dt]} dug
0
2

=j‘ ([T - 1/2 [[zg, (1) cill? + [Zg, (1) g, w(t)]) (Exp - 1/2 {[R(£)g,z]
2 0 1 1
2
- 2 [z, Att)uwl} ¢(t)dt) du,

where we note that both
© 2 ©
[[26: (g, [|° and [Z4.(D)z., w(t)]
1 - - l . ok

are in L? [0,T] for each z in 22. Hence the derivative is (defined a.e, 0 < t < T):
. - : i
f (- 1/2 [|E¢ (). ||° + (2, ()L, , w(t)]) Exp - 1/2 {[R(O)Z,z] - 2 [2, A(t)w]} du
b 11 . 11 i : z
2

we shall next prove that
N A
g(t) = i 9, (g () 0 <t <T
converges in the norm of W. But this is immediate from the fact that analogous

to (3.21)5

2 ik e S 2 ;
HgN(t)H <c },[lli¢i(t>ci||71 Exp + 172 [[aC0)y]] a.e. 0 <t<T

Let

A o A
S(t) = E¢i(t)ci(i)
1




and

© 2
/\ j; Hiq)i(t)cill Exp - 1/2 {[R(t)g,z] - 2 [g, A(t)y]} du,

lseo]|? = <

/; Exp - 1/2 {{R(D)Z,0] - 2 [z, ayl} duy
2

Then from (2.13) we can write: /\

dt
and hence finally, for the log likelihood functional:

Log £(y)

JA 2 LA
%l {_/r s (% -2 [ 5, ywla
0 0

T /\2 5 ;
S dliscor? - e

we note that the third term can also be expressed as

limit EC[[S(0) - S|

n -+ «

A(t)Pny]

The formula (3.22) differs from the Wiener process version in the o pearw

of the thir term; in the case where S(t) is Gaussian, we know that this

to

- 2
EL][s(t) - st {["]

: A A “
4 10g £(t, y) = - 1/2 {Ils(t)|l2 = [80t), ylrya # HS(t)ll2 - ||g(t)||?}

(3.22)

102

reduces

which is then also independent of the observation y(*) as we have already seen.
J
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4. Dynamic Systems.

Finite Dimensional Case:

We wish now to specialise our results to the case where S(8,t) has

a stochastic differential system representation:

S(6,t) = C(6) x (0,t)

L) = a) x(05t) + T(O) w(t); X(0,0) = 0. el

and the observation process has the form:

y(0,t) = 5(0,t) + G w(t) (1.2)

where we shall first consider the finite dimensional case so that C(0),
AC0), F(8), G are all rectangular matrices with,
A(8): mxmy F(8): mxn,

0

5
~
D
~
()
"

%

GG = Identity matrix
We take w(+) as sample functions of white noise in
W= L2[(0,T); Rn]‘
Now equation (4.1) for each fixed 0 has (see [10]) the unique sclution.
Y A0) (t-s)
X(0,1) f ¢ 57 F(0) w(s)ds 0 <t <T
0

and

X0,t) = L

defincs a Hilbert-Schmidt operator on W into




W,

S = L2((O,T); Rm)

In that case
A A
S(8,t) = C(0) x (6,t)
where

A A t3
%0,1) = A(B) %(0,8) + P(B5t) C(O) [y(t) - 3(6,0)] %(8,0) = 0 (4.3a)

and P(0;t) satisfies the (Riccati) equation:

P(0,t) = A(B) P(0,t) + P(8,) A (9)
+ F(0) T (0) - P(0,1) (8)" C(B) P(O,1)3
P(0,0) = 0 (4.3b)
And finally, the likelihood functional beccmes:
' i A 2 Ry
Exp - 1/2 {f ||s(o,t)||“at - 2 f [S(0,t) y(t)1dt
0 0
¥ b3
+ _[ Tr. C(0) B(o,8) C(o) at | (4.

This result was apparently first obtained by F. C. Schweppe [11] by
proceeding formally from the time-discrete case. i 4
In estimiting parameters by maximising (4.4) we proceed as follows.

let
i

A 2 £ A %
qo,T) = / [15C0,0] | at - 2 [ [5(0,1), y(t))dt
[ ;

+f Tr. CC0) PCO,t) C(0) dt




we use the iteration (modified Newton-Raphson) :
0 .. =06 -MO)T vqo ;1)
n+l n n pd n’

where M(0;T) is the matrix with components:

fr 3 A a A
mij(O) = | (s-&i— STE I - T ﬁ—j— S(e,t)Jdt

where {oci} denote the 'components' of 6. We assume that M(0,T) is
positive definite on the set of admissible parameters 6.

Infinite-Dimensional Case

The extension of (4.1) to the infinite dimensional case (corresponding
to partial differential equations) can take many forms. One version is
treated in [10]. For each 6, A(®) in (4.1) ic now the infinitesimal

generator of a strongly continuous semigroup over a separable Hilbert space

- -—

g Equation (4.1} remins formally the same, wiih F{(6) being o 1inear

a g

bounded transformation for each 6, mapping H into HS’ w(*) denoting white

noise in
W= Lz[(o,'r]; H]

H being a separable Hilbert space.
Similarly C(0) is assumed to be linear bounded and G linear bounded with
b % )
F(6)G = 03 G6& = Identity

In that case the finite dimensional version (h.4) goes over without change

provided we assume that

£ ?
/ EC]|CC0) x (05t)]]7)dt <
0

'
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This in particular implies that

(8) P(0,t) (8"

is trace-class a.e. and that

T
f Tr.C(0) P(0,t) C(0) dt < .
0

However from the practical point of view we need to consider the case

where C(0) is allowed to be unbounded, and uncloseable, (corresponding

to 'boundary' or 'pointwise' observations in distributed parameter systems).
Here we shall consider such an extension that takes care of the

application to the case of turbulence with non-rational spectrum (see Sec. 6).

Actually the model we shall study represents a wide variety of situations

assuming only linearity. Thus we take:

. y(t) = S(£,0) + ny(t) 0 <t<T (4.5)
where nl(') is white noise in

Wy = Lz((O,T); Rm)

and S(t,0) has the form

t 18
S(t,0) = f B(6; t - s) wu(S)ds + f F(o; t - s)nz(s)d;s (4.6)
0 0

where nz(-) is white-noise (independent of nl(-)) in

WS = L2((0,T); &1),

o0
: Gt . 2 |
u(*) is a known (deterministic) function, andf [luto) || at < = j
0 |




and for each 0:

f |]B(8;0)||2d0 + f Ill‘(8;0)|l2do <™ (4.7)
0 0

Note that (4.1), (4.2) form a special case of (4.5), (4.6), (4.7),

where the laplace transforms of B(6,0) and F(6,0) are constrained to be
mtional functions. To handle the generalization when cne (or both) is

not necessarily rational, we proceed (see [12]) as follows. We show that

we can rewrite (4.7) in terms of a partial differential equation representation.

Thus let
H = L2[0, @y Rp]

where p is the dimension of the cbservation. Let A denote the generator

of the shift-semigroup over H:

D(A) = [f e H | £{-) is absolutely continuous and the

derivative f£'(+) € H]
and
&F =

Let u(t) be an m x 1 matrixfunction. Let B(8) denote a linear bounded
opcrator mapping Rm into H defined by:
B(0) u = g3 g(t)=B(8,tlu 0 <t < ®,ueR

Let

nl(t)

w(t) -’( )
n2(t)

W P T ————
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so that w(+) is white noise in
L2((0,T); Iﬁ) X Rn)

Let F(0) denote the linear bounded operator mapping }&) x R, into H defined
by

nl> nl € I\p
bl

F(O)v = g5 g(t) = F(030)ny, v :<n n, € R
L Tt

Finally let G denote the mapping of Rp X Rn into Rp defined by

n

v = l,n SR o e R,
n P n

GV = wy, W =n : 1 9

l’

Then we claim that (4.6) is representable as:

x(6,t) = A x () + B(OYu(t) + F(O) w(t); x(8,0) = 0

(4.8)
y(E) = € %(8,t) + Gult)

where it should be noted that

£3 E3
Boye =0; 68 =1

where C is the operator defined by

Domain of C = [f € H | f(+) is continuous in 0 < t < «]
CEt = £(0)

We assume that B(0,t), F(6,t) are locally continuous in 0 < t < =, Ve
can readily see that x(0,t) is then in the domain of C for each t. That

(4.8) is the same as (4.7) follows from the representation:




95 t
xwﬁkf S(t -0) B(8)u(o)do ﬁ[ S(t - o) F(8) w(o)do
0 0

where S(t) is the semigroup (shift) generated by A. Even though C is not
closeable, C x(8,t) is defined and is locally continuous in 0 < t < o,
for each u(+) and w(+). We can then (see [12]) deduce the analogue of

(4.3a), (4.3b) as:

A A P A A

%60, €] = A #(9,t) * (C P(O,B)) [y(t) - C x{0,t)] x(6,0) = 0 (4.9)
where P(8,t) satisfies:

. % b3
[PCo,t) %, y] = [P(8,t)x, Ayl + [P(6,t)y, A x]

[F(0) %, F(8)'y]

+

- [cp(o,t)x, CP(6,t)y]

P(8,0) = 0, (4.10)

*
X, y € Domain of A ,
In particular P(0,t) maps into the damain of C, and

C P(0,t)

is linear bounded (even though C is  * closed; see [12]) for each t.

Moreover (cf[12]):

%
(C P(o,t)) € Domain of C

and

%
C (CP(6,t)) is bounded (and automatically trace-class

being finite dimensional)
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The Radon-Nikodym derivative formula (4.4) now becames
o ) s
Exp - 1/2 f [{sta, £ ae - 2 f [s(e,t), y(t)Idt
0 0

T
+ ./” Tr. C(C P(0,1)) dt (4.11)
0

In this version it is important to note that the 'steady-state'

solution of (4.10) exists:

PCO, «*)x = limit P(8, =)x

10

0 = [P(0, =)x, Ayl + [P(6, x)y, A x]

ES b
+ [F(8) x, F(8) y] - [C P(8, »)x, C P(O, »)y] (4.12)
provided

f f ”F(Oa U"'t)”z do dt <o (4.13)
g =@

5. Application

We twn now to an application: estimation of stability and control
derivatives from flight test data. The dynamic system considered arisecs
from the longitudinal mode perturbation equations for an aircraft in

windgust (turbulence) (Rediess Taylor, see [13]). We use the Dryden

version of the spectrum of turbulence, which is rational, so that the total

system is finite dimensional. Leaving the many essential details to the

comprehensive work of Iliff [11], the state space formulation of the problem

is as follows: (see also [121):

x(t) = A x(t) + Bu(t) + F n, (1)
V() = C x(1) + D ult) + 6 ny(t)
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where nl('), and n2(-) are independent whit Gaussian, and the matrices

in the equations have the form:

= =
Zl 0 1 Zl
0 0 1 0
A =
Ml 0 M3 le
v
S B
r- —
Zq 0
0 0
B = F=o
M,4 0
0 1
| 20\7_J
0 0 1 0
0 1 0 0
C= Moo -
10111 VZl 0 lOM3 IOMl-VZl
& g
32K
kl 0 - 1 kl
%8 v o
0 =
0
D= ) byt
ioﬁl_v““
£
0
x o

g = acceleration due to gravity

G = diag. [.000%, .0001, .01, .0001]
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The lettered entries (stability and control derivatives) are unknown,
except for v, which is known (=1670). Note that the turbulence power is
; an unknown parameter also.

The sampling interval was 0.02 seconds while t' . data bandwidth i-
about SHZ. Figure 1 shows the complete time history of the observation
v(t) (four components) subdivided into various regions for later identi-
fication, as well as the input time-history. Estimites were computed

over the various subregions each by three methods:

Method 1: Neglecting the measurement noise on the angle of attack
measurnent (vq) and following the corresponding maximal
likelihood technique developed in [13]. This is reasonable

for this particular example at high turbulence levels.
Method II: This is the method developed herein.

Method ITI: This was a "check" method, in which the turbulence

1 was ignored completely in the model.

-

The results are summarized in Figure 2. Sample means and variances

of the estimates obtained over the different data-regions are shown, along
with the wind-tunnel values as well estimates obtained on other turbulence-
free (smooth air) flights. It can be seen that Method II yields the most

consistent estimates. It also tums out that Method II is the least in

et -~ AU A AL S

computational time -- the estimates converging in fewer iterations. It
can also be seen that ignoring the turbulence leads to the worst results.
For more discussion see [11]. The remaining figures indicate the nature

of the "fit" obtained using the estimated cocfficients to the observed

T —

data. Figure 3 shows the close agreement provided by Method II. Figures
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and 5 indicate how much worse the agreement is on the same stretch of
data if the turbulence is not accounted for.
If we use the non-rational (Kolmogorov) version of the spectrum of

turbulence, we have to use [4.11]. In paticular in this case,

F(0,t) has the form

5/6 ~1/6

F(O,t) = (a(®) t Ehetaye  Je

corresponding to the spectral density of the form (cf[151):

1l+c f2
(1 + d £9)1L/E

The possibility of using flight~test data to distinguish between the
two models of the spectral density is an intriguing one at the present

time.
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